
packages

Application

Assembly

Namespace

Type

Method

Field

1 Requires PDBs. Logical LOC: number of IL
sequence points; language and style independent.

2 Require source code.
3 Currently for C# only, VB soon. Metric is not

additive.
4 Varies depending on compiling for release or

debug.
5 One namespace defined over N assemblies

counts as N namespaces

c
a

rd
in

a
lity

re
la

tio
n

a
l

A
p

p
lic

a
ti

o
n

A
ss

e
m

b
ly

N
a
m

e
sp

a
ce

T
yp

e
M

e
th

o
d

Fi
e
ld

Lines of Code (LOC) 1

Lines of Comments 2, 3

Percentage Comment 2

Number of IL Instructions 4

Number of Assemblies
Number of Namespaces 5

Number of Types

Number of Methods
Number of Fields

Number of Parameters
Number of Variables
Afferent Coupling (Ca)
Efferent Coupling (Ce)

Relational Cohesion (H)
Instability (I)

Abstractness (A)
Distance from main sequence (D)
Level
Rank
Cyclomatic Complexity (CC)
IL Cyclomatic Complexity (ILCC)

Instance Size
Association Between Classes (ABC)
Number of Children (NOC)
Depth of Inheritance Tree (DIT)
Response for a Type (RFT)

Lack of Cohesion of Methods (LCOM)

metrics

coupling
Efferent coupling (Ce): number of
types within this package that depend
on types outside this package

Afferent coupling (Ca): number of
types outside this package that depend
on types within this package

Abstractness (A): ratio of the number of
internal abstract types to the number of internal
types.

A=0 indicates a completely concrete package.

A=1 indicates a completely abstract package .

abstractness

Instability, I

A
b

st
ra

ct
n

e
ss

,
A

A
b
st

ra
ct

C
o
n

cr
et

e

Stable Instable

Main sequence,
A + I = 1,

represents optimal balance
between abstractness and
stability

D is the normalized
distance from main
sequence, 0 ≤ D ≤ 1

Assemblies where D > 0.7
might be problematic.
However, in the real world it
is very hard to avoid such
assemblies. Allow a small
percentage of your
assemblies to violate this
constraint.

D = 0.7

D
 =

 0
.7

Assemblies that are
concrete and stable
are potentially hard to
maintain.

Assemblies that are
abstract and
instable are

potentially useless.

distance from main sequence:
zone of pain and zone of uselessness

x y
y depends on x

x is used by y

key

Instability (I): ratio of efferent coupling to total coupling,
which indicates the package’s resilience to change.

I = Ce / (Ce + Ca)

I=0 indicates a completely stable package, painful to modify.
I=1 indicates a completely instable package.

instability

Relational Cohesion (H): average number of internal
relationships per type:

H = (R + 1) / N, where

R = number of type relationships internal to the package,
and

N = number of types in the package.

Classes inside an assembly should be strongly related, the
cohesion should be high. On the other hand, too high values
may indicate over-coupling. A good range is 1.5 ≤ H ≤ 4.0.

cohesion

Ce = 2

Ca = 5

I = 2/7 = 0.29

N = 8

R = 12

A = 3/8 = 0.375

H = 13/8 = 1.625

package
A

A

A

Cyclomatic Complexity (CC)

Number of these expressions in the method
body:

if, while, for, foreach, case, default,
continue, goto, &&, ||, catch,
? : (ternary operator), ?? (nonnull operator)

These expressions are not counted:

else, do, switch, try, using, throw, finally, return,
object creation, method call, field access

CC > 15 are hard to understand, CC > 30 are
extremely complex and should be split into
smaller methods (unless generated code)

IL Cyclomatic Complexity (ILCC)

Number of distinct code offsets targeted by
jump/branch IL instructions. Language
independent.

ILCC is generally larger than CC.

ILCC(if) = 1

ILCC(for) = 2

ILCC(foreach) = 3

ILCC > 20 are hard to understand, ILCC > 40 are
extremely complex and should be split into
smaller methods (unless generated code)

The number of decisions that can be taken in a procedure.

cyclomatic complexity

Level 0

Framework

Level 1

Level 2

Level N/A

level
If a package depends on nothing or framework

packages, then it is Level 0.

If a package depends on packages of at most
Level N, then it is Level N+1.

If a package is part of a circular dependency, then
it is Level N/A. If a package depends on
something of Level N/A, it is Level N/A.

ndepend
metrics
Version 1.1

Copyright © Corillian Corporation, 2007.
All rights reserved.

References

www.ndepend.com | Documentation |
Metrics definitions

Agile Principles, Patterns, and Practices in
C#, Robert C. Martin, Prentice Hall PTR,
2006

association
between classes
The association between classes
(ABC) is the number of members
of others types that a class directly
uses in its the body of its methods.

class

ABC = 5

NOC = 7

DIT = 0

NOC = 3NOC = 1

DIT = 1

NOC = 0

DIT = 2

The depth of inheritance tree (DIT)
for a class or a structure is its
number of base classes (including
System.Object thus DIT ≥ 1).

Types where DIT > 6 might be hard
to maintain.

Not a rule since sometime classes
inherit from tier classes which have
a high DIT. E.g., the average depth
of inheritance for framework
classes which derive from
System.Windows.Forms.Control is
5.3.

depth of
inheritance tree

Number of children
(NOC) for a class is
the number of types
that subclass it
directly or indirectly.

Number of children
for an interface is the
number of types that
implement it.

number of
children

1.49

rank
Google Page Rank applied to types

or methods.

If T1, …, TN are the types (methods)
that depend on type (method)
A, then the rank of A is

d = damping factor, typically 0.85.

Test types with high rank
thoroughly, as defects there are
likely to be more catastrophic.





N

i i

i

TCa

TR
ddAR

1)(

)(
)1()(

0.78

1.58

0.15

B l o g s • S c o t t H a n s e l m a n — w w w . h a n s e l m a n . c o m • P a t r i c k C a u l d w e l l — w w w . c a u l d w e l l . n e t • S t u a r t C e l a r i e r — w w w . f e r n c r k . c o m / b l o g

The single responsibility principle states that a
class should not have more than one reason to
change. Such a class is cohesive.

M = static and instance methods in the class,

F = instance fields in the class,

Mf = methods accessing field f, and

|S| = cardinality of set S.

In a class that is utterly cohesive, every method
accesses every instance field

so LOCM = 0.

A high LCOM value generally pinpoints a poorly
cohesive class.

Types where LCOM > 0.8 and |F| > 10 and |M|
>10 might be problematic. However, it is very
hard to avoid such non-cohesive types.

FM

M
LOCM Ff f



 1

FMMf 

lack of cohesion of methods

LCOM = 0.8

A

One class with five
fields, each with a
getter and setter.

LCOM = 0.24

B

Five constructors each set five fields
(black); two getters that access two
fields (blue); and three getters that
access three fields (green).

LCOM = 0

.
.
.

A1

A5

Five classes, each
with one field and a
getter and setter.

LCOM = 0

